Cognitively Inspired Neural Network for Recognition of Situations
نویسندگان
چکیده
The authors present a cognitively inspired mathematical learning framework called Neural Modeling Fields (NMF). They apply it to learning and recognition of situations composed of objects. NMF successfully overcomes the combinatorial complexity of associating subsets of objects with situations and demonstrates fast and reliable convergence. The implications of the current results for building multilayered intelligent systems are also discussed.
منابع مشابه
Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملPattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملRobsut Wrod Reocginiton via Semi-Character Recurrent Neural Network
The Cmabrigde Uinervtisy (Cambridge University) effect from the psycholinguistics literature has demonstrated a robust word processing mechanism in humans, where jumbled words (e.g. Cmabrigde / Cambridge) are recognized with little cost. Inspired by the findings from the Cmabrigde Uinervtisy effect, we propose a word recognition model based on a semi-character level recursive neural network (sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJNCR
دوره 1 شماره
صفحات -
تاریخ انتشار 2010